Copied to
clipboard

G = C3×C24⋊D5order 480 = 25·3·5

Direct product of C3 and C24⋊D5

direct product, non-abelian, soluble, monomial

Aliases: C3×C24⋊D5, C24⋊C53C6, (C23×C6)⋊1D5, C242(C3×D5), (C3×C24⋊C5)⋊2C2, SmallGroup(480,1194)

Series: Derived Chief Lower central Upper central

C1C24C24⋊C5 — C3×C24⋊D5
C1C24C24⋊C5C3×C24⋊C5 — C3×C24⋊D5
C24⋊C5 — C3×C24⋊D5
C1C3

Generators and relations for C3×C24⋊D5
 G = < a,b,c,d,e,f,g | a3=b2=c2=d2=e2=f5=g2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, geg=bc=cb, bd=db, fcf-1=gcg=be=eb, fbf-1=e, bg=gb, cd=dc, ce=ec, de=ed, fdf-1=bce, gdg=cde, fef-1=bcde, gfg=f-1 >

Subgroups: 592 in 86 conjugacy classes, 8 normal (all characteristic)
C1, C2, C3, C4, C22, C5, C6, C2×C4, D4, C23, D5, C12, C2×C6, C15, C22⋊C4, C2×D4, C24, C2×C12, C3×D4, C22×C6, C3×D5, C22≀C2, C3×C22⋊C4, C6×D4, C23×C6, C24⋊C5, C3×C22≀C2, C24⋊D5, C3×C24⋊C5, C3×C24⋊D5
Quotients: C1, C2, C3, C6, D5, C3×D5, C24⋊D5, C3×C24⋊D5

Character table of C3×C24⋊D5

 class 12A2B2C2D3A3B4A4B4C5A5B6A6B6C6D6E6F6G6H12A12B12C12D12E12F15A15B15C15D
 size 155520112020203232555555202020202020202032323232
ρ1111111111111111111111111111111    trivial
ρ21111-111-1-1-111111111-1-1-1-1-1-1-1-11111    linear of order 2
ρ31111-1ζ3ζ32-1-1-111ζ3ζ32ζ32ζ32ζ3ζ3ζ65ζ6ζ65ζ6ζ6ζ6ζ65ζ65ζ3ζ3ζ32ζ32    linear of order 6
ρ41111-1ζ32ζ3-1-1-111ζ32ζ3ζ3ζ3ζ32ζ32ζ6ζ65ζ6ζ65ζ65ζ65ζ6ζ6ζ32ζ32ζ3ζ3    linear of order 6
ρ511111ζ3ζ3211111ζ3ζ32ζ32ζ32ζ3ζ3ζ3ζ32ζ3ζ32ζ32ζ32ζ3ζ3ζ3ζ3ζ32ζ32    linear of order 3
ρ611111ζ32ζ311111ζ32ζ3ζ3ζ3ζ32ζ32ζ32ζ3ζ32ζ3ζ3ζ3ζ32ζ32ζ32ζ32ζ3ζ3    linear of order 3
ρ72222022000-1+5/2-1-5/222222200000000-1+5/2-1-5/2-1-5/2-1+5/2    orthogonal lifted from D5
ρ82222022000-1-5/2-1+5/222222200000000-1-5/2-1+5/2-1+5/2-1-5/2    orthogonal lifted from D5
ρ922220-1--3-1+-3000-1-5/2-1+5/2-1--3-1+-3-1+-3-1+-3-1--3-1--300000000ζ32ζ5332ζ52ζ32ζ5432ζ5ζ3ζ543ζ5ζ3ζ533ζ52    complex lifted from C3×D5
ρ1022220-1+-3-1--3000-1+5/2-1-5/2-1+-3-1--3-1--3-1--3-1+-3-1+-300000000ζ3ζ543ζ5ζ3ζ533ζ52ζ32ζ5332ζ52ζ32ζ5432ζ5    complex lifted from C3×D5
ρ1122220-1+-3-1--3000-1-5/2-1+5/2-1+-3-1--3-1--3-1--3-1+-3-1+-300000000ζ3ζ533ζ52ζ3ζ543ζ5ζ32ζ5432ζ5ζ32ζ5332ζ52    complex lifted from C3×D5
ρ1222220-1--3-1+-3000-1+5/2-1-5/2-1--3-1+-3-1+-3-1+-3-1--3-1--300000000ζ32ζ5432ζ5ζ32ζ5332ζ52ζ3ζ533ζ52ζ3ζ543ζ5    complex lifted from C3×D5
ρ135-311-15511-100-31-3111-1-11-1111-10000    orthogonal lifted from C24⋊D5
ρ14511-3155-11-100111-3-3111-1-1-111-10000    orthogonal lifted from C24⋊D5
ρ1551-311551-1-1001-3111-3111-11-1-1-10000    orthogonal lifted from C24⋊D5
ρ1651-31-155-111001-3111-3-1-1-11-11110000    orthogonal lifted from C24⋊D5
ρ17511-3-1551-1100111-3-31-1-1111-1-110000    orthogonal lifted from C24⋊D5
ρ185-311155-1-1100-31-311111-11-1-1-110000    orthogonal lifted from C24⋊D5
ρ195-311-1-5-5-3/2-5+5-3/211-1003+3-3/2ζ33-3-3/2ζ3ζ32ζ32ζ6ζ65ζ32ζ65ζ3ζ3ζ32ζ60000    complex faithful
ρ2051-311-5+5-3/2-5-5-3/21-1-100ζ33+3-3/2ζ32ζ32ζ33-3-3/2ζ3ζ32ζ3ζ6ζ32ζ6ζ65ζ650000    complex faithful
ρ21511-31-5-5-3/2-5+5-3/2-11-100ζ32ζ3ζ33-3-3/23+3-3/2ζ32ζ32ζ3ζ6ζ65ζ65ζ3ζ32ζ60000    complex faithful
ρ2251-31-1-5+5-3/2-5-5-3/2-11100ζ33+3-3/2ζ32ζ32ζ33-3-3/2ζ65ζ6ζ65ζ32ζ6ζ32ζ3ζ30000    complex faithful
ρ2351-311-5-5-3/2-5+5-3/21-1-100ζ323-3-3/2ζ3ζ3ζ323+3-3/2ζ32ζ3ζ32ζ65ζ3ζ65ζ6ζ60000    complex faithful
ρ24511-31-5+5-3/2-5-5-3/2-11-100ζ3ζ32ζ323+3-3/23-3-3/2ζ3ζ3ζ32ζ65ζ6ζ6ζ32ζ3ζ650000    complex faithful
ρ25511-3-1-5+5-3/2-5-5-3/21-1100ζ3ζ32ζ323+3-3/23-3-3/2ζ3ζ65ζ6ζ3ζ32ζ32ζ6ζ65ζ30000    complex faithful
ρ265-3111-5-5-3/2-5+5-3/2-1-11003+3-3/2ζ33-3-3/2ζ3ζ32ζ32ζ32ζ3ζ6ζ3ζ65ζ65ζ6ζ320000    complex faithful
ρ27511-3-1-5-5-3/2-5+5-3/21-1100ζ32ζ3ζ33-3-3/23+3-3/2ζ32ζ6ζ65ζ32ζ3ζ3ζ65ζ6ζ320000    complex faithful
ρ2851-31-1-5-5-3/2-5+5-3/2-11100ζ323-3-3/2ζ3ζ3ζ323+3-3/2ζ6ζ65ζ6ζ3ζ65ζ3ζ32ζ320000    complex faithful
ρ295-311-1-5+5-3/2-5-5-3/211-1003-3-3/2ζ323+3-3/2ζ32ζ3ζ3ζ65ζ6ζ3ζ6ζ32ζ32ζ3ζ650000    complex faithful
ρ305-3111-5+5-3/2-5-5-3/2-1-11003-3-3/2ζ323+3-3/2ζ32ζ3ζ3ζ3ζ32ζ65ζ32ζ6ζ6ζ65ζ30000    complex faithful

Permutation representations of C3×C24⋊D5
On 30 points - transitive group 30T113
Generators in S30
(1 28 18)(2 29 19)(3 30 20)(4 26 16)(5 27 17)(6 21 11)(7 22 12)(8 23 13)(9 24 14)(10 25 15)
(1 13)(2 14)(4 11)(5 12)(6 26)(7 27)(8 28)(9 29)(16 21)(17 22)(18 23)(19 24)
(3 15)(4 11)(6 26)(10 30)(16 21)(20 25)
(3 15)(5 12)(7 27)(10 30)(17 22)(20 25)
(1 13)(3 15)(4 11)(5 12)(6 26)(7 27)(8 28)(10 30)(16 21)(17 22)(18 23)(20 25)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(1 12)(2 11)(3 15)(4 14)(5 13)(6 29)(7 28)(8 27)(9 26)(10 30)(16 24)(17 23)(18 22)(19 21)(20 25)

G:=sub<Sym(30)| (1,28,18)(2,29,19)(3,30,20)(4,26,16)(5,27,17)(6,21,11)(7,22,12)(8,23,13)(9,24,14)(10,25,15), (1,13)(2,14)(4,11)(5,12)(6,26)(7,27)(8,28)(9,29)(16,21)(17,22)(18,23)(19,24), (3,15)(4,11)(6,26)(10,30)(16,21)(20,25), (3,15)(5,12)(7,27)(10,30)(17,22)(20,25), (1,13)(3,15)(4,11)(5,12)(6,26)(7,27)(8,28)(10,30)(16,21)(17,22)(18,23)(20,25), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,12)(2,11)(3,15)(4,14)(5,13)(6,29)(7,28)(8,27)(9,26)(10,30)(16,24)(17,23)(18,22)(19,21)(20,25)>;

G:=Group( (1,28,18)(2,29,19)(3,30,20)(4,26,16)(5,27,17)(6,21,11)(7,22,12)(8,23,13)(9,24,14)(10,25,15), (1,13)(2,14)(4,11)(5,12)(6,26)(7,27)(8,28)(9,29)(16,21)(17,22)(18,23)(19,24), (3,15)(4,11)(6,26)(10,30)(16,21)(20,25), (3,15)(5,12)(7,27)(10,30)(17,22)(20,25), (1,13)(3,15)(4,11)(5,12)(6,26)(7,27)(8,28)(10,30)(16,21)(17,22)(18,23)(20,25), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,12)(2,11)(3,15)(4,14)(5,13)(6,29)(7,28)(8,27)(9,26)(10,30)(16,24)(17,23)(18,22)(19,21)(20,25) );

G=PermutationGroup([[(1,28,18),(2,29,19),(3,30,20),(4,26,16),(5,27,17),(6,21,11),(7,22,12),(8,23,13),(9,24,14),(10,25,15)], [(1,13),(2,14),(4,11),(5,12),(6,26),(7,27),(8,28),(9,29),(16,21),(17,22),(18,23),(19,24)], [(3,15),(4,11),(6,26),(10,30),(16,21),(20,25)], [(3,15),(5,12),(7,27),(10,30),(17,22),(20,25)], [(1,13),(3,15),(4,11),(5,12),(6,26),(7,27),(8,28),(10,30),(16,21),(17,22),(18,23),(20,25)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(1,12),(2,11),(3,15),(4,14),(5,13),(6,29),(7,28),(8,27),(9,26),(10,30),(16,24),(17,23),(18,22),(19,21),(20,25)]])

G:=TransitiveGroup(30,113);

On 30 points - transitive group 30T118
Generators in S30
(1 28 18)(2 29 19)(3 30 20)(4 26 16)(5 27 17)(6 24 14)(7 25 15)(8 21 11)(9 22 12)(10 23 13)
(1 13)(2 14)(4 11)(5 12)(6 29)(8 26)(9 27)(10 28)(16 21)(17 22)(18 23)(19 24)
(3 15)(4 11)(7 30)(8 26)(16 21)(20 25)
(3 15)(5 12)(7 30)(9 27)(17 22)(20 25)
(1 13)(3 15)(4 11)(5 12)(7 30)(8 26)(9 27)(10 28)(16 21)(17 22)(18 23)(20 25)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(1 5)(2 4)(6 8)(9 10)(11 14)(12 13)(16 19)(17 18)(21 24)(22 23)(26 29)(27 28)

G:=sub<Sym(30)| (1,28,18)(2,29,19)(3,30,20)(4,26,16)(5,27,17)(6,24,14)(7,25,15)(8,21,11)(9,22,12)(10,23,13), (1,13)(2,14)(4,11)(5,12)(6,29)(8,26)(9,27)(10,28)(16,21)(17,22)(18,23)(19,24), (3,15)(4,11)(7,30)(8,26)(16,21)(20,25), (3,15)(5,12)(7,30)(9,27)(17,22)(20,25), (1,13)(3,15)(4,11)(5,12)(7,30)(8,26)(9,27)(10,28)(16,21)(17,22)(18,23)(20,25), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,5)(2,4)(6,8)(9,10)(11,14)(12,13)(16,19)(17,18)(21,24)(22,23)(26,29)(27,28)>;

G:=Group( (1,28,18)(2,29,19)(3,30,20)(4,26,16)(5,27,17)(6,24,14)(7,25,15)(8,21,11)(9,22,12)(10,23,13), (1,13)(2,14)(4,11)(5,12)(6,29)(8,26)(9,27)(10,28)(16,21)(17,22)(18,23)(19,24), (3,15)(4,11)(7,30)(8,26)(16,21)(20,25), (3,15)(5,12)(7,30)(9,27)(17,22)(20,25), (1,13)(3,15)(4,11)(5,12)(7,30)(8,26)(9,27)(10,28)(16,21)(17,22)(18,23)(20,25), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,5)(2,4)(6,8)(9,10)(11,14)(12,13)(16,19)(17,18)(21,24)(22,23)(26,29)(27,28) );

G=PermutationGroup([[(1,28,18),(2,29,19),(3,30,20),(4,26,16),(5,27,17),(6,24,14),(7,25,15),(8,21,11),(9,22,12),(10,23,13)], [(1,13),(2,14),(4,11),(5,12),(6,29),(8,26),(9,27),(10,28),(16,21),(17,22),(18,23),(19,24)], [(3,15),(4,11),(7,30),(8,26),(16,21),(20,25)], [(3,15),(5,12),(7,30),(9,27),(17,22),(20,25)], [(1,13),(3,15),(4,11),(5,12),(7,30),(8,26),(9,27),(10,28),(16,21),(17,22),(18,23),(20,25)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(1,5),(2,4),(6,8),(9,10),(11,14),(12,13),(16,19),(17,18),(21,24),(22,23),(26,29),(27,28)]])

G:=TransitiveGroup(30,118);

Matrix representation of C3×C24⋊D5 in GL5(𝔽61)

130000
013000
001300
000130
000013
,
600000
060000
00100
000600
000060
,
10000
01000
006000
000600
00001
,
10000
01000
006000
00010
000060
,
600000
01000
006000
000600
000060
,
00001
10000
01000
00100
00010
,
00001
00010
00100
01000
10000

G:=sub<GL(5,GF(61))| [13,0,0,0,0,0,13,0,0,0,0,0,13,0,0,0,0,0,13,0,0,0,0,0,13],[60,0,0,0,0,0,60,0,0,0,0,0,1,0,0,0,0,0,60,0,0,0,0,0,60],[1,0,0,0,0,0,1,0,0,0,0,0,60,0,0,0,0,0,60,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,60,0,0,0,0,0,1,0,0,0,0,0,60],[60,0,0,0,0,0,1,0,0,0,0,0,60,0,0,0,0,0,60,0,0,0,0,0,60],[0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0],[0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0] >;

C3×C24⋊D5 in GAP, Magma, Sage, TeX

C_3\times C_2^4\rtimes D_5
% in TeX

G:=Group("C3xC2^4:D5");
// GroupNames label

G:=SmallGroup(480,1194);
// by ID

G=gap.SmallGroup(480,1194);
# by ID

G:=PCGroup([7,-2,-3,-5,-2,2,2,2,506,2523,437,1068,13865,2539,7356,265]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^3=b^2=c^2=d^2=e^2=f^5=g^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,g*e*g=b*c=c*b,b*d=d*b,f*c*f^-1=g*c*g=b*e=e*b,f*b*f^-1=e,b*g=g*b,c*d=d*c,c*e=e*c,d*e=e*d,f*d*f^-1=b*c*e,g*d*g=c*d*e,f*e*f^-1=b*c*d*e,g*f*g=f^-1>;
// generators/relations

Export

Character table of C3×C24⋊D5 in TeX

׿
×
𝔽