G = C3×C24⋊D5 order 480 = 25·3·5
direct product, non-abelian, soluble, monomial
Aliases:
C3×C24⋊D5,
C24⋊C5⋊3C6,
(C23×C6)⋊1D5,
C24⋊2(C3×D5),
(C3×C24⋊C5)⋊2C2,
SmallGroup(480,1194)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×C24⋊D5
G = < a,b,c,d,e,f,g | a3=b2=c2=d2=e2=f5=g2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, geg=bc=cb, bd=db, fcf-1=gcg=be=eb, fbf-1=e, bg=gb, cd=dc, ce=ec, de=ed, fdf-1=bce, gdg=cde, fef-1=bcde, gfg=f-1 >
Subgroups: 592 in 86 conjugacy classes, 8 normal (all characteristic)
C1, C2, C3, C4, C22, C5, C6, C2×C4, D4, C23, D5, C12, C2×C6, C15, C22⋊C4, C2×D4, C24, C2×C12, C3×D4, C22×C6, C3×D5, C22≀C2, C3×C22⋊C4, C6×D4, C23×C6, C24⋊C5, C3×C22≀C2, C24⋊D5, C3×C24⋊C5, C3×C24⋊D5
Quotients: C1, C2, C3, C6, D5, C3×D5, C24⋊D5, C3×C24⋊D5
Character table of C3×C24⋊D5
class | 1 | 2A | 2B | 2C | 2D | 3A | 3B | 4A | 4B | 4C | 5A | 5B | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 12A | 12B | 12C | 12D | 12E | 12F | 15A | 15B | 15C | 15D | |
size | 1 | 5 | 5 | 5 | 20 | 1 | 1 | 20 | 20 | 20 | 32 | 32 | 5 | 5 | 5 | 5 | 5 | 5 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 32 | 32 | 32 | 32 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | ζ3 | ζ32 | -1 | -1 | -1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ65 | ζ6 | ζ65 | ζ6 | ζ6 | ζ6 | ζ65 | ζ65 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 6 |
ρ4 | 1 | 1 | 1 | 1 | -1 | ζ32 | ζ3 | -1 | -1 | -1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ6 | ζ65 | ζ6 | ζ65 | ζ65 | ζ65 | ζ6 | ζ6 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 6 |
ρ5 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 3 |
ρ6 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 3 |
ρ7 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ8 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ9 | 2 | 2 | 2 | 2 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1-√-3 | -1+√-3 | -1+√-3 | -1+√-3 | -1-√-3 | -1-√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ32ζ53+ζ32ζ52 | ζ32ζ54+ζ32ζ5 | ζ3ζ54+ζ3ζ5 | ζ3ζ53+ζ3ζ52 | complex lifted from C3×D5 |
ρ10 | 2 | 2 | 2 | 2 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1+√-3 | -1-√-3 | -1-√-3 | -1-√-3 | -1+√-3 | -1+√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3ζ54+ζ3ζ5 | ζ3ζ53+ζ3ζ52 | ζ32ζ53+ζ32ζ52 | ζ32ζ54+ζ32ζ5 | complex lifted from C3×D5 |
ρ11 | 2 | 2 | 2 | 2 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√-3 | -1-√-3 | -1-√-3 | -1-√-3 | -1+√-3 | -1+√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3ζ53+ζ3ζ52 | ζ3ζ54+ζ3ζ5 | ζ32ζ54+ζ32ζ5 | ζ32ζ53+ζ32ζ52 | complex lifted from C3×D5 |
ρ12 | 2 | 2 | 2 | 2 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√-3 | -1+√-3 | -1+√-3 | -1+√-3 | -1-√-3 | -1-√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ32ζ54+ζ32ζ5 | ζ32ζ53+ζ32ζ52 | ζ3ζ53+ζ3ζ52 | ζ3ζ54+ζ3ζ5 | complex lifted from C3×D5 |
ρ13 | 5 | -3 | 1 | 1 | -1 | 5 | 5 | 1 | 1 | -1 | 0 | 0 | -3 | 1 | -3 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊D5 |
ρ14 | 5 | 1 | 1 | -3 | 1 | 5 | 5 | -1 | 1 | -1 | 0 | 0 | 1 | 1 | 1 | -3 | -3 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊D5 |
ρ15 | 5 | 1 | -3 | 1 | 1 | 5 | 5 | 1 | -1 | -1 | 0 | 0 | 1 | -3 | 1 | 1 | 1 | -3 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊D5 |
ρ16 | 5 | 1 | -3 | 1 | -1 | 5 | 5 | -1 | 1 | 1 | 0 | 0 | 1 | -3 | 1 | 1 | 1 | -3 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊D5 |
ρ17 | 5 | 1 | 1 | -3 | -1 | 5 | 5 | 1 | -1 | 1 | 0 | 0 | 1 | 1 | 1 | -3 | -3 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊D5 |
ρ18 | 5 | -3 | 1 | 1 | 1 | 5 | 5 | -1 | -1 | 1 | 0 | 0 | -3 | 1 | -3 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊D5 |
ρ19 | 5 | -3 | 1 | 1 | -1 | -5-5√-3/2 | -5+5√-3/2 | 1 | 1 | -1 | 0 | 0 | 3+3√-3/2 | ζ3 | 3-3√-3/2 | ζ3 | ζ32 | ζ32 | ζ6 | ζ65 | ζ32 | ζ65 | ζ3 | ζ3 | ζ32 | ζ6 | 0 | 0 | 0 | 0 | complex faithful |
ρ20 | 5 | 1 | -3 | 1 | 1 | -5+5√-3/2 | -5-5√-3/2 | 1 | -1 | -1 | 0 | 0 | ζ3 | 3+3√-3/2 | ζ32 | ζ32 | ζ3 | 3-3√-3/2 | ζ3 | ζ32 | ζ3 | ζ6 | ζ32 | ζ6 | ζ65 | ζ65 | 0 | 0 | 0 | 0 | complex faithful |
ρ21 | 5 | 1 | 1 | -3 | 1 | -5-5√-3/2 | -5+5√-3/2 | -1 | 1 | -1 | 0 | 0 | ζ32 | ζ3 | ζ3 | 3-3√-3/2 | 3+3√-3/2 | ζ32 | ζ32 | ζ3 | ζ6 | ζ65 | ζ65 | ζ3 | ζ32 | ζ6 | 0 | 0 | 0 | 0 | complex faithful |
ρ22 | 5 | 1 | -3 | 1 | -1 | -5+5√-3/2 | -5-5√-3/2 | -1 | 1 | 1 | 0 | 0 | ζ3 | 3+3√-3/2 | ζ32 | ζ32 | ζ3 | 3-3√-3/2 | ζ65 | ζ6 | ζ65 | ζ32 | ζ6 | ζ32 | ζ3 | ζ3 | 0 | 0 | 0 | 0 | complex faithful |
ρ23 | 5 | 1 | -3 | 1 | 1 | -5-5√-3/2 | -5+5√-3/2 | 1 | -1 | -1 | 0 | 0 | ζ32 | 3-3√-3/2 | ζ3 | ζ3 | ζ32 | 3+3√-3/2 | ζ32 | ζ3 | ζ32 | ζ65 | ζ3 | ζ65 | ζ6 | ζ6 | 0 | 0 | 0 | 0 | complex faithful |
ρ24 | 5 | 1 | 1 | -3 | 1 | -5+5√-3/2 | -5-5√-3/2 | -1 | 1 | -1 | 0 | 0 | ζ3 | ζ32 | ζ32 | 3+3√-3/2 | 3-3√-3/2 | ζ3 | ζ3 | ζ32 | ζ65 | ζ6 | ζ6 | ζ32 | ζ3 | ζ65 | 0 | 0 | 0 | 0 | complex faithful |
ρ25 | 5 | 1 | 1 | -3 | -1 | -5+5√-3/2 | -5-5√-3/2 | 1 | -1 | 1 | 0 | 0 | ζ3 | ζ32 | ζ32 | 3+3√-3/2 | 3-3√-3/2 | ζ3 | ζ65 | ζ6 | ζ3 | ζ32 | ζ32 | ζ6 | ζ65 | ζ3 | 0 | 0 | 0 | 0 | complex faithful |
ρ26 | 5 | -3 | 1 | 1 | 1 | -5-5√-3/2 | -5+5√-3/2 | -1 | -1 | 1 | 0 | 0 | 3+3√-3/2 | ζ3 | 3-3√-3/2 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ6 | ζ3 | ζ65 | ζ65 | ζ6 | ζ32 | 0 | 0 | 0 | 0 | complex faithful |
ρ27 | 5 | 1 | 1 | -3 | -1 | -5-5√-3/2 | -5+5√-3/2 | 1 | -1 | 1 | 0 | 0 | ζ32 | ζ3 | ζ3 | 3-3√-3/2 | 3+3√-3/2 | ζ32 | ζ6 | ζ65 | ζ32 | ζ3 | ζ3 | ζ65 | ζ6 | ζ32 | 0 | 0 | 0 | 0 | complex faithful |
ρ28 | 5 | 1 | -3 | 1 | -1 | -5-5√-3/2 | -5+5√-3/2 | -1 | 1 | 1 | 0 | 0 | ζ32 | 3-3√-3/2 | ζ3 | ζ3 | ζ32 | 3+3√-3/2 | ζ6 | ζ65 | ζ6 | ζ3 | ζ65 | ζ3 | ζ32 | ζ32 | 0 | 0 | 0 | 0 | complex faithful |
ρ29 | 5 | -3 | 1 | 1 | -1 | -5+5√-3/2 | -5-5√-3/2 | 1 | 1 | -1 | 0 | 0 | 3-3√-3/2 | ζ32 | 3+3√-3/2 | ζ32 | ζ3 | ζ3 | ζ65 | ζ6 | ζ3 | ζ6 | ζ32 | ζ32 | ζ3 | ζ65 | 0 | 0 | 0 | 0 | complex faithful |
ρ30 | 5 | -3 | 1 | 1 | 1 | -5+5√-3/2 | -5-5√-3/2 | -1 | -1 | 1 | 0 | 0 | 3-3√-3/2 | ζ32 | 3+3√-3/2 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ65 | ζ32 | ζ6 | ζ6 | ζ65 | ζ3 | 0 | 0 | 0 | 0 | complex faithful |
Permutation representations of C3×C24⋊D5
►On 30 points - transitive group
30T113Generators in S
30
(1 28 18)(2 29 19)(3 30 20)(4 26 16)(5 27 17)(6 21 11)(7 22 12)(8 23 13)(9 24 14)(10 25 15)
(1 13)(2 14)(4 11)(5 12)(6 26)(7 27)(8 28)(9 29)(16 21)(17 22)(18 23)(19 24)
(3 15)(4 11)(6 26)(10 30)(16 21)(20 25)
(3 15)(5 12)(7 27)(10 30)(17 22)(20 25)
(1 13)(3 15)(4 11)(5 12)(6 26)(7 27)(8 28)(10 30)(16 21)(17 22)(18 23)(20 25)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(1 12)(2 11)(3 15)(4 14)(5 13)(6 29)(7 28)(8 27)(9 26)(10 30)(16 24)(17 23)(18 22)(19 21)(20 25)
G:=sub<Sym(30)| (1,28,18)(2,29,19)(3,30,20)(4,26,16)(5,27,17)(6,21,11)(7,22,12)(8,23,13)(9,24,14)(10,25,15), (1,13)(2,14)(4,11)(5,12)(6,26)(7,27)(8,28)(9,29)(16,21)(17,22)(18,23)(19,24), (3,15)(4,11)(6,26)(10,30)(16,21)(20,25), (3,15)(5,12)(7,27)(10,30)(17,22)(20,25), (1,13)(3,15)(4,11)(5,12)(6,26)(7,27)(8,28)(10,30)(16,21)(17,22)(18,23)(20,25), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,12)(2,11)(3,15)(4,14)(5,13)(6,29)(7,28)(8,27)(9,26)(10,30)(16,24)(17,23)(18,22)(19,21)(20,25)>;
G:=Group( (1,28,18)(2,29,19)(3,30,20)(4,26,16)(5,27,17)(6,21,11)(7,22,12)(8,23,13)(9,24,14)(10,25,15), (1,13)(2,14)(4,11)(5,12)(6,26)(7,27)(8,28)(9,29)(16,21)(17,22)(18,23)(19,24), (3,15)(4,11)(6,26)(10,30)(16,21)(20,25), (3,15)(5,12)(7,27)(10,30)(17,22)(20,25), (1,13)(3,15)(4,11)(5,12)(6,26)(7,27)(8,28)(10,30)(16,21)(17,22)(18,23)(20,25), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,12)(2,11)(3,15)(4,14)(5,13)(6,29)(7,28)(8,27)(9,26)(10,30)(16,24)(17,23)(18,22)(19,21)(20,25) );
G=PermutationGroup([[(1,28,18),(2,29,19),(3,30,20),(4,26,16),(5,27,17),(6,21,11),(7,22,12),(8,23,13),(9,24,14),(10,25,15)], [(1,13),(2,14),(4,11),(5,12),(6,26),(7,27),(8,28),(9,29),(16,21),(17,22),(18,23),(19,24)], [(3,15),(4,11),(6,26),(10,30),(16,21),(20,25)], [(3,15),(5,12),(7,27),(10,30),(17,22),(20,25)], [(1,13),(3,15),(4,11),(5,12),(6,26),(7,27),(8,28),(10,30),(16,21),(17,22),(18,23),(20,25)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(1,12),(2,11),(3,15),(4,14),(5,13),(6,29),(7,28),(8,27),(9,26),(10,30),(16,24),(17,23),(18,22),(19,21),(20,25)]])
G:=TransitiveGroup(30,113);
►On 30 points - transitive group
30T118Generators in S
30
(1 28 18)(2 29 19)(3 30 20)(4 26 16)(5 27 17)(6 24 14)(7 25 15)(8 21 11)(9 22 12)(10 23 13)
(1 13)(2 14)(4 11)(5 12)(6 29)(8 26)(9 27)(10 28)(16 21)(17 22)(18 23)(19 24)
(3 15)(4 11)(7 30)(8 26)(16 21)(20 25)
(3 15)(5 12)(7 30)(9 27)(17 22)(20 25)
(1 13)(3 15)(4 11)(5 12)(7 30)(8 26)(9 27)(10 28)(16 21)(17 22)(18 23)(20 25)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(1 5)(2 4)(6 8)(9 10)(11 14)(12 13)(16 19)(17 18)(21 24)(22 23)(26 29)(27 28)
G:=sub<Sym(30)| (1,28,18)(2,29,19)(3,30,20)(4,26,16)(5,27,17)(6,24,14)(7,25,15)(8,21,11)(9,22,12)(10,23,13), (1,13)(2,14)(4,11)(5,12)(6,29)(8,26)(9,27)(10,28)(16,21)(17,22)(18,23)(19,24), (3,15)(4,11)(7,30)(8,26)(16,21)(20,25), (3,15)(5,12)(7,30)(9,27)(17,22)(20,25), (1,13)(3,15)(4,11)(5,12)(7,30)(8,26)(9,27)(10,28)(16,21)(17,22)(18,23)(20,25), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,5)(2,4)(6,8)(9,10)(11,14)(12,13)(16,19)(17,18)(21,24)(22,23)(26,29)(27,28)>;
G:=Group( (1,28,18)(2,29,19)(3,30,20)(4,26,16)(5,27,17)(6,24,14)(7,25,15)(8,21,11)(9,22,12)(10,23,13), (1,13)(2,14)(4,11)(5,12)(6,29)(8,26)(9,27)(10,28)(16,21)(17,22)(18,23)(19,24), (3,15)(4,11)(7,30)(8,26)(16,21)(20,25), (3,15)(5,12)(7,30)(9,27)(17,22)(20,25), (1,13)(3,15)(4,11)(5,12)(7,30)(8,26)(9,27)(10,28)(16,21)(17,22)(18,23)(20,25), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,5)(2,4)(6,8)(9,10)(11,14)(12,13)(16,19)(17,18)(21,24)(22,23)(26,29)(27,28) );
G=PermutationGroup([[(1,28,18),(2,29,19),(3,30,20),(4,26,16),(5,27,17),(6,24,14),(7,25,15),(8,21,11),(9,22,12),(10,23,13)], [(1,13),(2,14),(4,11),(5,12),(6,29),(8,26),(9,27),(10,28),(16,21),(17,22),(18,23),(19,24)], [(3,15),(4,11),(7,30),(8,26),(16,21),(20,25)], [(3,15),(5,12),(7,30),(9,27),(17,22),(20,25)], [(1,13),(3,15),(4,11),(5,12),(7,30),(8,26),(9,27),(10,28),(16,21),(17,22),(18,23),(20,25)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(1,5),(2,4),(6,8),(9,10),(11,14),(12,13),(16,19),(17,18),(21,24),(22,23),(26,29),(27,28)]])
G:=TransitiveGroup(30,118);
Matrix representation of C3×C24⋊D5 ►in GL5(𝔽61)
13 | 0 | 0 | 0 | 0 |
0 | 13 | 0 | 0 | 0 |
0 | 0 | 13 | 0 | 0 |
0 | 0 | 0 | 13 | 0 |
0 | 0 | 0 | 0 | 13 |
,
60 | 0 | 0 | 0 | 0 |
0 | 60 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 60 | 0 |
0 | 0 | 0 | 0 | 60 |
,
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 60 | 0 | 0 |
0 | 0 | 0 | 60 | 0 |
0 | 0 | 0 | 0 | 1 |
,
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 60 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 60 |
,
60 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 60 | 0 | 0 |
0 | 0 | 0 | 60 | 0 |
0 | 0 | 0 | 0 | 60 |
,
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
,
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
G:=sub<GL(5,GF(61))| [13,0,0,0,0,0,13,0,0,0,0,0,13,0,0,0,0,0,13,0,0,0,0,0,13],[60,0,0,0,0,0,60,0,0,0,0,0,1,0,0,0,0,0,60,0,0,0,0,0,60],[1,0,0,0,0,0,1,0,0,0,0,0,60,0,0,0,0,0,60,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,60,0,0,0,0,0,1,0,0,0,0,0,60],[60,0,0,0,0,0,1,0,0,0,0,0,60,0,0,0,0,0,60,0,0,0,0,0,60],[0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0],[0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0] >;
C3×C24⋊D5 in GAP, Magma, Sage, TeX
C_3\times C_2^4\rtimes D_5
% in TeX
G:=Group("C3xC2^4:D5");
// GroupNames label
G:=SmallGroup(480,1194);
// by ID
G=gap.SmallGroup(480,1194);
# by ID
G:=PCGroup([7,-2,-3,-5,-2,2,2,2,506,2523,437,1068,13865,2539,7356,265]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^3=b^2=c^2=d^2=e^2=f^5=g^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,g*e*g=b*c=c*b,b*d=d*b,f*c*f^-1=g*c*g=b*e=e*b,f*b*f^-1=e,b*g=g*b,c*d=d*c,c*e=e*c,d*e=e*d,f*d*f^-1=b*c*e,g*d*g=c*d*e,f*e*f^-1=b*c*d*e,g*f*g=f^-1>;
// generators/relations
Export
Character table of C3×C24⋊D5 in TeX